Deploy AWS SSM agent to CoreOS

If you have been a CoreOS user for long you will undoubtedly have noticed that there is no real package management system.   If you’re not familiar, the philosophy of CoreOS is to avoid using a package manager and instead rely heavily on leveraging the power of Docker containers along with a few system level tools to manage servers.  The problem that I just recently stumbled across is that the AWS SSM agent is packaged into debian and RPM formats and is assumed to be installed with a package manager, which obviously won’t work on CoreOS.  In the remainder of this post I will describe the steps that I took to get the SSM agent working on a CoreOS/Dockerized server.  Overall I am very happy with how well this solution turned out.

To get started, there is a nice tutorial here for using the AWS Session Manager through the the console.  The most important thing that needs to be done before “installing” the SSM agent on the CoreOS host is to set up the AWS instance with the correct permissions for the agent to be able to communicate with AWS.  For accomplishing this, I created a new IAM role and attached the AmazonEC2RoleForSSM policy to it through the AWS console.

After this step is done, you can bring up the ssm-agent.

Install the ssm-agent

After ensuring the correct permissions have been applied to the server that is to be manager, the next step is to bring up the agent.  To do this using Docker, there are some tricks that need to be used to get things working correctly, notably, fixing the PID 1 zombie reaping problem that Docker has.

I basically lifted the Dockerfile from here originally and adapted it into my own public Docker image at jmreicha/ssm-agent:latest.  In case readers want to go try this, my image is a little bit newer than the original source and has a few tweaks.  The Dockerfile itself is mostly straight forward, the main difference is that the ssm-agent process won’t reap child processes in the default Debian image.

In order to work around the child reaping problem I substituted the slick Phusion Docker baseimage, which has a very simple process manager that allows shells spawned by the ssm-agent to be reaped when they get terminated.  I have my Dockerfile hosted here if you want to check out how the phusion baseimage version works.

Once the child reaping problem was solved, here is the command I initially used to spin up the container, which of course still didn’t work out of the box.

docker run \
  -v /var/run/dbus:/var/run/dbus \
  -v /run/systemd:/run/systemd \
 jmreicha/ssm-agent:latest

I received the following errors.

2018-11-05 17:42:27 INFO [OfflineService] Starting document processing engine...
2018-11-05 17:42:27 INFO [OfflineService] [EngineProcessor] Starting
2018-11-05 17:42:27 INFO [OfflineService] [EngineProcessor] Initial processing
2018-11-05 17:42:27 INFO [OfflineService] Starting message polling
2018-11-05 17:42:27 INFO [OfflineService] Starting send replies to MDS
2018-11-05 17:42:27 INFO [LongRunningPluginsManager] starting long running plugin manager
2018-11-05 17:42:27 INFO [LongRunningPluginsManager] there aren't any long running plugin to execute
2018-11-05 17:42:27 INFO [HealthCheck] HealthCheck reporting agent health.
2018-11-05 17:42:27 INFO [MessageGatewayService] Starting session document processing engine...
2018-11-05 17:42:27 INFO [MessageGatewayService] [EngineProcessor] Starting
2018-11-05 17:42:27 INFO [LongRunningPluginsManager] There are no long running plugins currently getting executed - skipping their healthcheck
2018-11-05 17:42:27 INFO [StartupProcessor] Executing startup processor tasks
2018-11-05 17:42:27 INFO [StartupProcessor] Unable to open serial port /dev/ttyS0: open /dev/ttyS0: no such file or directory
2018-11-05 17:42:27 INFO [StartupProcessor] Attempting to use different port (PV): /dev/hvc0
2018-11-05 17:42:27 INFO [StartupProcessor] Unable to open serial port /dev/hvc0: open /dev/hvc0: no such file or directory
2018-11-05 17:42:27 ERROR [StartupProcessor] Error opening serial port: open /dev/hvc0: no such file or directory
2018-11-05 17:42:27 ERROR [StartupProcessor] Error opening serial port: open /dev/hvc0: no such file or directory. Retrying in 5 seconds...
2018-11-05 17:42:27 INFO [MessageGatewayService] Successfully created ssm-user
2018-11-05 17:42:27 ERROR [MessageGatewayService] Failed to add ssm-user to sudoers file: open /etc/sudoers.d/ssm-agent-users: no such file or directory
2018-11-05 17:42:27 INFO [MessageGatewayService] [EngineProcessor] Initial processing
2018-11-05 17:42:27 INFO [MessageGatewayService] Setting up websocket for controlchannel for instance: i-0d33006836710e7ef, requestId: 2975fe0d-846d-4256-9d50-57932be03925
2018-11-05 17:42:27 INFO [MessageGatewayService] listening reply.
2018-11-05 17:42:27 INFO [MessageGatewayService] Opening websocket connection to: %!(EXTRA string=wss://ssmmessages.us-west-2.amazonaws.com/v1/control-channel/i-0d33006836710e7ef?role=subscribe&stream=input)
2018-11-05 17:42:27 INFO [MessageGatewayService] Successfully opened websocket connection to: %!(EXTRA string=wss://ssmmessages.us-west-2.amazonaws.com/v1/control-channel/i-0d33006836710e7ef?role=subscribe&stream=input)
2018-11-05 17:42:27 INFO [MessageGatewayService] Starting receiving message from control channel
2018-11-05 17:42:32 INFO [StartupProcessor] Unable to open serial port /dev/ttyS0: open /dev/ttyS0: no such file or directory
2018-11-05 17:42:32 INFO [StartupProcessor] Attempting to use different port (PV): /dev/hvc0
2018-11-05 17:42:32 INFO [StartupProcessor] Unable to open serial port /dev/hvc0: open /dev/hvc0: no such file or directory
2018-11-05 17:42:32 ERROR [StartupProcessor] Error opening serial port: open /dev/hvc0: no such file or directory
2018-11-05 17:42:32 ERROR [StartupProcessor] Error opening serial port: open /dev/hvc0: no such file or directory. Retrying in 5 seconds...
2018-11-05 17:42:35 INFO [MessagingDeliveryService] [Association] No associations on boot. Requerying for associations after 30 seconds.

The first error that jumped out in logs is the “Unable to open serial port”.  There is also an error referring to not being able to add the ssm-user to the sudoers file.

The fix for these issues is to add a Docker flag to the CoreOS serial device, “–device=/dev/ttyS0” and a volume mount to the sudoers path, “-v /etc/sudoers.d:/etc/sudoers.d”.  The full Docker run command is shown below.

docker run -d --restart unless-stopped --name ssm-agent \
  --device=/dev/ttyS0 \
  -v /var/run/dbus:/var/run/dbus \
  -v /run/systemd:/run/systemd \
  -v /etc/sudoers.d:/etc/sudoers.d \
  jmreicha/ssm-agent:latest

After fixing the errors found in the logs, and bringing up the containerized SSM agent, go ahead and create a new session in the AWS console.

ssm session

The session should come up pretty much immediately and you should be able to run commands like you normally would.

The last thing to (optionally) do is run the agent as a systemd service to take advantage of some capabilities to start it up automatically if it dies or start it if the server gets rebooted.  You can probably just get away with using the docker restart policy too if you aren’t interested in configuring a systemd service, which is what I have chosen to do for now.

You could even adapt this Docker image into a Kubernetes manifest and run it as a daemonset on each node of the cluster if desired to simplify things and add another layer of security.  I may return to the systemd unit and/or Kubernetes manifest in the future if readers are interested.

Conclusion

session history

The AWS Session manager is a fantastic tool for troubleshooting/debugging as well as auditing and security.

With SSM you can make sure to never expose specific servers to the internet directly, and you can also keep track of what kinds of commands have been run on the server.  As a bonus, the AWS console helps keeps track of all the previous sessions that were created and if you hook up to Cloudwatch and/or S3 you can see all the commands and times that they were run with nice simple links to the log files.

SSM allows you to do a lot of other cool stuff like run scripts against either a subset of servers which can be filtered by tags or against all servers that are recognized by SSM.  I’m sure there are some other features as well, I just haven’t found them yet.

Read More

Multiarch Docker builds using Shippable

Recently I have been experimenting with different ways of building multi architecture Docker images.  As part of this process I wrote about Docker image manifests and the different ways you can package multi architecture builds into a single Docker image.  Packaging the images is only half the problem though.  You basically need to create the different Docker images for the different architectures first, before you are able to package them into manifests.

There are several ways to go about building the Docker images for various architectures.  In the remainder of this post I will be showing how you can build Docker images natively against arm64 only as well as amd64/arm64 simultaneously using some slick features provided by the folks at Shippable.  Having the ability to automate multi architecture builds with CI is really powerful because it avoids having to use other tools or tricks which can complicate the process.

Shippable recently announced integrated support for arm64 builds.  The steps for creating these cross platform builds is fairly straight forward and is documented on their website.  The only downside to using this method is that currently you must explicitly contact Shippable and requests access to use the arm64 pool of nodes for running jobs, but after that multi arch builds should be available.

For reference, here is the full shippable.yml file I used to test out the various types of builds and their options.

Arm64 only builds

After enabling the shippable_shared_aarch64 node pool (from the instruction above) you should have access to arm64 builds, just add the following block to your shippable.yml file.

runtime:
  nodePool: shippable_shared_aarch64

The only other change that needs to be made is to point the shippable.yaml file at the newly added node pool and you should be ready to build on arm64.  You can use the default “managed” build type in Shippable to create builds.

Below I have a very simple example shippable.yml file for building a Dockerfile and pushing its image to my Dockerhub account.  The shippable.yml file for this build lives in the GitHub repo I configured Shippable to track.

language: none

runtime:
  nodePool:
    - shippable_shared_aarch64
    - default_node_pool

build:

  ci:
    - sed -i 's|registry.fedoraproject.org/||' Dockerfile.fedora-28
    - docker build -t local/freeipa-server -f Dockerfile.fedora-28 .
    - tests/run-master-and-replica.sh local/freeipa-server

  post_ci:
    - docker tag local/freeipa-server jmreicha/freeipa-server:test
    - docker push jmreicha/freeipa-server:test

integrations:
  hub:
    - integrationName: dockerhub
      type: dockerRegistryLogin

Once you have a shippable.yml file in a repo that you would like to track and also have things set up on the Shippable side, then every time a commit/merge happens on the master branch (or whatever branch you set up Shippable to track) an arm64 Docker image gets built and pushed to the Dockerhub.

Docs for settings up this CI style job can be found here.  There are many other configuration settings available to tune so I would encourage you to read the docs and also play around with the various options.

Parallel arm64 and amd64 builds

The approach for doing the simultaneous parallel builds is a little bit different and adds a little bit more complexity, but I think is worth it for the ability to automate cross platform builds.  There are a few things to note about the below configuration.  You can use templates in either style job.  Also, notice the use of the shipctl command.  This tool basically allows you to mimic some of the other functionality that exists in the default runCI jobs, including the ability to login to Docker registries via shell commands and manage other tricky parts of the build pipeline, like moving into the correct directory to build from.

Most of the rest of the config is pretty straight forward.  The top level jobs directive lets you create multiple different jobs, which in turn allows you to set the runtime to use different node pools, which is how we build against amd64 and arm64.  Jobs also allow for setting different environment variables among other things.  The full docs for jobs shows all of the various capabilities of these jobs.

templates: &build-test-push
  - export HUB_USERNAME=$(shipctl get_integration_field "dockerhub" "username")
  - export HUB_PASSWORD=$(shipctl get_integration_field "dockerhub" "password")
  - docker login --username $HUB_USERNAME --password $HUB_PASSWORD
  - cd $(shipctl get_resource_state "freeipa-container-gitRepo")
  - sed -i 's|registry.fedoraproject.org/||' Dockerfile.fedora-27
  - sed -i 's/^# debug:\s*//' Dockerfile.fedora-27
  - docker build -t local/freeipa-server -f Dockerfile.fedora-27 .
  - tests/run-master-and-replica.sh local/freeipa-server
  - docker tag local/freeipa-server jmreicha/freeipa-server:$arch
  - docker push jmreicha/freeipa-server:$arch

resources:
    - name: freeipa-container-gitRepo
      type: gitRepo
      integration: freeipa-container-gitRepo
      versionTemplate:
          sourceName: jmreicha/freeipa-container
          branch: master

jobs:
  - name: build_amd64
    type: runSh
    runtime:
      nodePool: default_node_pool
      container: true
    integrations:
      - dockerhub
    steps:
      - IN: freeipa-container-gitRepo
      - TASK:
          runtime:
            options:
              env:
                - privileged: --privileged
                # Also look at using SHIPPABLE_NODE_ARCHITECTURE env var
                - arch: amd64
          script:
            - *build-test-push

  - name: build_arm64
    type: runSh
    runtime:
      nodePool: shippable_shared_aarch64
      container: true
    integrations:
      - dockerhub
    steps:
      - IN: freeipa-container-gitRepo
      - TASK:
          runtime:
            options:
              env:
                - privileged: --privileged
                - arch: arm64
          script:
            - *build-test-push

As you can see, there is a lot more manual configuration going on here than the first job.

I decided to use the top level templates directive to basically DRY the configuration so that it can be reused.  I am also setting environment variables per job to ensure the correct architecture gets built and pushed for the various platforms.  Otherwise the configuration is mostly straight forward.  The confusion with these types of jobs if you haven’t set them up before mostly comes from figuring out where things get configured in the Shippable UI.

Conclusion

I must admit, Shippable is really easy to get started with, has good support and has good documentation.  I am definitely a fan and will recommend and use their products whenever I get a chance.  If you are familiar with Travis then using Shippable is easy.  Shippable even supports the use of Travis compatible environment variables, which makes porting over Travis configs really easy.  I hope to see more platforms and architectures supported in the future but for now arm64 is a great start.

There are some downside to using the parallel builds for multi architecture builds.  Namely there is more overhead in setting up the job initially.  With the runSh (and other unmanaged jobs) you don’t really have access to some of the top level yml declarations that come with managed jobs, so you will need to spend more time figuring out how to wire up the logic manually using shell commands and the shipctl tool as depicted in my above example.  This ends up being more flexible in the long run but also harder to understand and get working to begin with.

Another downside of the assembly line style jobs like runSh is that they currently can’t leverage all the features that the runCI job can, including the matrix generation (though there is a feature request to add it in the future) and report parsing.

The last downside when setting up unmanaged jobs is trying to figure out how to wire up the different components on the Shippable side of things.  For example you don’t just create a runCI job like the first example.  You have to first create an integration with the repo that you are configuring so that shippable can make an rSync and serveral runSh jobs to connect with the repo and be able to work correctly.

Overall though, I love both of the runSh and runCI jobs.  Both types of jobs lend themselves to being flexible and composable and are very easy to work with.  I’d also like to mention that the support has been excellent, which is a big deal to me.  The support team was super responsive and helpful trying to sort out my issues.  They even opened some PRs on my test repo to fix some issues.  And as far as I know, there are no other CI systems currently offering native arm64 builds which I believe will become more important as the arm architecture continues to gain momentum.

Read More

Building k8s Manifests with Helm Templates

As I have started working more with Kubernetes lately I have found it very valuable to see what a manifest looks like before deploying it.  Helm can basically be used as a quick and dirty way to see what a rendered Helm template looks like.  This provides the security advantages of not running tiller in your production cluster if you choose to deploy the rendered templates locally.

Helm has been sort of a subject for contention for awhile now.  Security folks REALLY don’t like running the server side component because it basically allows root access into your cluster, unless it is managed a specific way, which tends to add much more complexity to the cluster.  There are plans in Helm 3 to remove the server side component as well as offering some more flexible configuration options that don’t rely on the Go templating, but that functionality not ready yet so I find rendering and deploying a nice middle ground for now.

At the same time, Helm does have some nice selling points which make it a nice option for certain situations.  I’d say the main draw to Helm is that it is ridiculously easy to set up and use, which is especially nice for things like local development or testing or just trying to figure out how things work in Kubernetes.  The other thing that Helm does that is difficult to do otherwise, is it manages deployments and versions and environments, although there have been a number of users that have had issues with these features.

Also check out Kustomize.  If you aren’t familiar, it is basically a tool for managing per environment customizations for yaml manifests and configurations.  You can get pretty far by rendering templates and overlaying kustomize on top of other configurations for managing different environments, etc.

Render a template (client side)

The first step to getting a working rendered template is to install the Helm client side component. There are installation instruction for various different platforms here.

brew install kubernetes-helm # (on OSX)

You will also need to grab some charts to test with.

git clone [email protected]:kubernetes/charts.git
cd charts/stable/metallb
helm template --namespace test --name test .

Below is an example with customized variables.

helm template --namespace test --name test --set controller.resources.limits.cpu=100m .

You can dump the rendered template to a file if you want to look at it or change anything.

helm template --namespace test --name test --set controller.resources.limits.cpu=100m . > helm-test.yaml

You can even deploy these rendered templates directly if you want to.

helm template --namespace test --name test --set controller.resources.limits.cpu=100m . | kubectl -f -

Render a template (server side)

Make sure tiller is running in the cluster first.  If you haven’t set up Helm on the server side before you basically set up tiller to run in the cluster.  Again, I would not recommend doing this on anything outside of a throw away or testing environment.  After the helm client has been installed you can use it to spin up tiller in the cluster.

helm init

Below is a basic example using the metallb chart.

helm install --namespace test --name test stable/metallb --dry-run --debug

Again, you can use customized variables.

helm install --namespace test --name test stable/metallb --set controller.resources.limits.cpu=100m --dry-run --debug

You may notice some extra configurations at the very beginning of the output.  This is basically just showing default values that get applied as well as things that have been customized by the user.  It is a quick way to see what kinds of things can be changed in the Helm chart.

Conclusion

Helm offers many other commands and options so I definitely recommend playing around with it and exploring the other things it can do.

I like to use both of these methods, but for now I just prefer to run a local tiller instance in a throwaway cluster (Docker for Mac) and pull in charts from the upstream repositories without having to git clone charts if I’m just looking at how the Kubernetes manifest configuration works.  You can’t really use the server side rendering though to actually deploy the manifests because it sticks a bunch of other information into the command output.

All in all the Helm templating is pretty powerful and combining it with something like kustomize should get you to around 90% of where you need to be, unless you are managing much more complex and complicated configurations.  The only thing that this method doesn’t lend itself very well to is managing releases and other metadata.  Otherwise it is a great way to manage configurations.

Read More

Exploring Docker Manifests

As part of my recent project to build an ARM based Kubernetes cluster (more on that in a different post) I have run into quite a few cross platform compatibility issues trying to get containers working in my cluster.

After a little bit of digging, I found that support was added in version 2.2 of the Docker image specification for manifests, which all Docker images to built against different platforms, including arm and arm64.  To add to this, I just recently discovered that in newer versions of Docker, there is a manifest sub-command that you can enable as an experimental feature to allow you to interact with the image manifests.  The manifest command is great for exploring Docker images without having to pull and run and test them locally or fighting with curl to get this information about an image from a Docker registry.

Enable the manifest command in Docker

First, make sure to have a semi recent version of Docker installed, I’m using 18.03.1 in this post.

Edit your docker configuration file, usually located in ~/.docker/config.json.  The following example assumes you have authentication configured, but really the only additional configuration needed is the { “experimental”: “enabled” }.

{
  "experimental": "enabled",
    "auths": {
    "https://index.docker.io/v1/": {
      "auth": "XXX"
    }
  }
}

After adding the experimental configuration to the client you should be able to access the docker manifest commands.

docker manifest -h

To inspect a manifest just provide an image to examine.

docker manifest inspect traefik

This will spit out a bunch of information about the Docker image, including schema, platforms, digests, etc.  which can be useful for finding out which platforms different images support.

{
   "schemaVersion": 2,
   "mediaType": "application/vnd.docker.distribution.manifest.list.v2+json",
   "manifests": [
      {
         "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
         "size": 739,
         "digest": "sha256:36df85f84cb73e6eee07767eaad2b3b4ff3f0a9dcf5e9ca222f1f700cb4abc88",
         "platform": {
            "architecture": "amd64",
            "os": "linux"
         }
      },
      {
         "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
         "size": 739,
         "digest": "sha256:f98492734ef1d8f78cbcf2037c8b75be77b014496c637e2395a2eacbe91e25bb",
         "platform": {
            "architecture": "arm",
            "os": "linux",
            "variant": "v6"
         }
      },
      {
         "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
         "size": 739,
         "digest": "sha256:7221080406536c12abc08b7e38e4aebd811747696a10836feb4265d8b2830bc6",
         "platform": {
            "architecture": "arm64",
            "os": "linux",
            "variant": "v8"
         }
      }
   ]
}

As you can see above image (traefik) supports arm and arm64 architectures.  This is a really handy way for determining if an image works across different platforms without having to pull an image and trying to run a command against it to see if it works.  The manifest sub command has some other useful features that allow you to create, annotate and push cross platform images but I won’t go into details here.

Manifest tool

I’d also like to quickly mention the Docker manifest-tool.  This tool is more or less superseded by the built-in Docker manifest command but still works basically the same way, allowing users to inspect, annotate, and push manifests.  The manifest-tool has a few additional features and supports several registries other than Dockerhub, and even has a utility script to see if a given registry supports the Docker v2 API and 2.2 image spec.  It is definitely still a good tool to look at if you are interested in publishing multi platform Docker images.

Downloading the manifest tool is easy as it is distributed as a Go binary.

curl -OL https://github.com/estesp/manifest-tool/releases/download/latest/manifest-tool-linux-amd64
mv manifest-tool-linux-amd64 manifest-tool
chmod +x manifest-tool

One you have the manifest-tool set up you can start usuing it, similar to the manifest inspect command.

./manifest-tool inspect traefik

This will dump out information about the image manifest if it exists.

Name:   traefik (Type: application/vnd.docker.distribution.manifest.list.v2+json)
Digest: sha256:eabb39016917bd43e738fb8bada87be076d4553b5617037922b187c0a656f4a4
 * Contains 3 manifest references:
1    Mfst Type: application/vnd.docker.distribution.manifest.v2+json
1       Digest: sha256:e65103d16ded975f0193c2357ccf1de13ebb5946894d91cf1c76ea23033d0476
1  Mfst Length: 739
1     Platform:
1           -      OS: linux
1           - OS Vers:
1           - OS Feat: []
1           -    Arch: amd64
1           - Variant:
1           - Feature:
1     # Layers: 2
         layer 1: digest = sha256:03732cc4924a93fcbcbed879c4c63aad534a63a64e9919eceddf48d7602407b5
         layer 2: digest = sha256:6023e30b264079307436d6b5d179f0626dde61945e201ef70ab81993d5e7ee15

2    Mfst Type: application/vnd.docker.distribution.manifest.v2+json
2       Digest: sha256:6cb42aa3a9df510b013db2cfc667f100fa54e728c3f78205f7d9f2b1030e30b2
2  Mfst Length: 739
2     Platform:
2           -      OS: linux
2           - OS Vers:
2           - OS Feat: []
2           -    Arch: arm
2           - Variant: v6
2           - Feature:
2     # Layers: 2
         layer 1: digest = sha256:8996ab8c9ae2c6afe7d318a3784c7ba1b1b72d4ae14cf515d4c1490aae91cab0
         layer 2: digest = sha256:ee51eed0bc1f59a26e1d8065820c03f9d7b3239520690b71fea260dfd841fba1

3    Mfst Type: application/vnd.docker.distribution.manifest.v2+json
3       Digest: sha256:e12dd92e9ae06784bd17d81bd8b391ff671c8a4f58abc8f8f662060b39140743
3  Mfst Length: 739
3     Platform:
3           -      OS: linux
3           - OS Vers:
3           - OS Feat: []
3           -    Arch: arm64
3           - Variant: v8
3           - Feature:
3     # Layers: 2
         layer 1: digest = sha256:78fe135ba97a13abc86dbe373975f0d0712d8aa6e540e09824b715a55d7e2ed3
         layer 2: digest = sha256:4c380abe0eadf15052dc9ca02792f1d35e0bd8a2cb1689c7ed60234587e482f0

Likewise, you can annotate and push image manifests using the manifest-tool.  Below is an example command for pushing multiple image architectures.

./manifest-tool --docker-cfg '~/.docker' push from-args --platforms "linux/amd64,linux/arm64" --template jmreicha/example:test --target "jmreicha/example:test"

mquery

I’d also like to touch quickly on the mquery tool.  If you’re only interested in seeing if a Docker image uses manifest as well as high level multi-platform information you can run this tool as a container.

docker run --rm mplatform/mquery traefik

Here’s what the output might look like.  Super simple but useful for quickly getting platform information.

Image: traefik
 * Manifest List: Yes
 * Supported platforms:
   - linux/amd64
   - linux/arm/v6
   - linux/arm64/v8

This can be useful if you don’t need a solution that is quite as heavy as manifest-tool or enabling the built in Docker experimental support.

You will still need to figure out how to build the image for each architecture first before pushing, but having the ability to use one image for all architectures is a really nice feature.

There is work going on in the Docker and Kubernetes communities to start leveraging the features of the 2.2 spec to create multi platform images using a single name.  This will be a great boon for helping to bring ARM adoption to the forefront and will help make the container experience on ARM much better going forward.

Read More

Python virtualenv Notes

Virtual environments are really useful for maintaining different packages and for separating different environments without getting your system messy.  In this post I will go over some of the various virtual environment tricks that I seem to always forget if I haven’t worked with Python in awhile.

This post is meant to be mostly a reference for remembering commands and syntax and other helpful notes.  I’d also like to mention that these steps were all tested on OSX, I haven’t tried on Windows so don’t know if it is any different.

Working with virtual environments

There are a few pieces in order to get to get started.  First, the default version of Python that ships with OSX is 2.7, which is slowly moving towards extinction.  Unfortunately, it isn’t exactly obvious how to replace this version of Python on OSX.

Just doing a “brew install python” won’t actually point the system at the newly installed version.  In order to get Python 3.x working correctly, you need to update the system path and place Python3 there.

export PATH="/usr/local/opt/python/libexec/bin:$PATH"

You will want to put the above line into your bashrc or zshrc (or whatever shell profile you use) to get the brew installed Python onto your system path by default.

Another thing I discovered – in Python 3 there is a built in command for creating virtual environments, which alleviates the need to install the virtualenv package.

Here is the command in Python 3 the command to create a new virtual environment.

python -m venv test

Once the environment has been created, it is very similar to virtualenv.  To use the environment, just source it.

source test/bin/activate

To deactivate the environment just use the “deactivate” command, like you would in virutalenv.

The virtualenv package

If you like the old school way of doing virtual environments you can still use the virtualenv package for managing your environments.

Once you have the correct version of Python, you will want to install the virtualenv package on your system globally in order to work with virtual environments.

sudo pip install virtualenvwrapper

You can check to see if the package was installed correctly by running virtualenv -h.  There are a number of useful virtualenv commands listed below for working with the environments.

Make a new virtual env

mkvirtualenv test-env

Work on a virtual env

workon test-env

Stop working on a virtual env

(when env is actiave) deactive

List environments

lsvirtualenv

Remove a virtual environment

rmvirtualenv test-env

Create virtualenv with specific version of python

mkvirtualenv -p $(which pypy) test2-env

Look at where environments are stored

ls ~/.virtualenvs

I’ll leave it here for now.  The commands and tricks I (re)discovered were enough to get me back to being productive with virtual environments.  If you have some other tips or tricks feel free to let me know.  I will update this post if I find anything else that is noteworthy.

Read More