Python virtualenv Notes

Virtual environments are really useful for maintaining different packages and for separating different environments without getting your system messy.  In this post I will go over some of the various virtual environment tricks that I seem to always forget if I haven’t worked with Python in awhile.

This post is meant to be mostly a reference for remembering commands and syntax and other helpful notes.  I’d also like to mention that these steps were all tested on OSX, I haven’t tried on Windows so don’t know if it is any different.

Working with virtual environments

There are a few pieces in order to get to get started.  First, the default version of Python that ships with OSX is 2.7, which is slowly moving towards extinction.  Unfortunately, it isn’t exactly obvious how to replace this version of Python on OSX.

Just doing a “brew install python” won’t actually point the system at the newly installed version.  In order to get Python 3.x working correctly, you need to update the system path and place Python3 there.

export PATH="/usr/local/opt/python/libexec/bin:$PATH"

You will want to put the above line into your bashrc or zshrc (or whatever shell profile you use) to get the brew installed Python onto your system path by default.

Another thing I discovered – in Python 3 there is a built in command for creating virtual environments, which alleviates the need to install the virtualenv package.

Here is the command in Python 3 the command to create a new virtual environment.

python -m venv test

Once the environment has been created, it is very similar to virtualenv.  To use the environment, just source it.

source test/bin/activate

To deactivate the environment just use the “deactivate” command, like you would in virutalenv.

The virtualenv package

If you like the old school way of doing virtual environments you can still use the virtualenv package for managing your environments.

Once you have the correct version of Python, you will want to install the virtualenv package on your system globally in order to work with virtual environments.

sudo pip install virtualenvwrapper

You can check to see if the package was installed correctly by running virtualenv -h.  There are a number of useful virtualenv commands listed below for working with the environments.

Make a new virtual env

mkvirtualenv test-env

Work on a virtual env

workon test-env

Stop working on a virtual env

(when env is actiave) deactive

List environments


Remove a virtual environment

rmvirtualenv test-env

Create virtualenv with specific version of python

mkvirtualenv -p $(which pypy) test2-env

Look at where environments are stored

ls ~/.virtualenvs

I’ll leave it here for now.  The commands and tricks I (re)discovered were enough to get me back to being productive with virtual environments.  If you have some other tips or tricks feel free to let me know.  I will update this post if I find anything else that is noteworthy.

Read More

Toggle the Vscode sidebar with vim bindings

There is an annoying behavior that you might run across in the Windows version of Vscode if you are using the Vsvim plugin when trying to use the default hotkey <ctrl+b> to toggle the sidebar open and closed.  As far as I can tell, this glitch doesn’t exist in the OSX version of Vscode.

In vim, the shortcut for this toggle is actually used to scroll the page buffer up one screen.  Obviously this makes behavior is the default for Vim but it also is annoying to not be able to open and close the sidebar.  The solution is a simple hotkey remap for the keyboard shortcut in Vscode.

To do this, pull open the keyboard shortcuts by either navigating to File -> Preferences -> Keyboard shortcuts

Or by using the command pallet (ctrl + shift + p) and searching for “keyboard shortcut”.

Once the keyboard shortcuts have been pulled open just do a search for “sidebar” and you should see the default key binding.

Just click in the “Toggle Side Bar Visibility” box and remap the keybinding to Ctrl+Shift+B (since that doesn’t get used by anything by default in Vim).  This menu is also really useful for just discovering all of the different keyboard shortcuts in Vscode.  I’m not really a fan of going crazy and totally customizing hotkeys in Vscode just because it makes support much harder but in this case it was easy enough and works really well with my workflow.

Read More

Fix the JenkinsAPI No valid crumb error

If you are working with the Python based JenkinsAPI library you might run into the No valid crumb was included in the request error.  The error below will probably look familiar if you’ve run into this issue.

Traceback (most recent call last):
 File "", line 47, in <module>
 File "", line 24, in deploy
 File "/usr/local/lib/python3.6/site-packages/jenkinsapi/", line 165, in build_job
 self[jobname].invoke(build_params=params or {})
 File "/usr/local/lib/python3.6/site-packages/jenkinsapi/", line 209, in invoke
 File "/usr/local/lib/python3.6/site-packages/jenkinsapi/utils/", line 143, in post_and_confirm_status
jenkinsapi.custom_exceptions.JenkinsAPIException: Operation failed. url=, data={'json': '{"parameter": [], "statusCode": "303", "redirectTo": "."}'}, headers={'Content-Type': 'application/x-www-form-urlencoded'}, status=403, text=b'<html>\n<head>\n<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>\n<title>Error 403 No valid crumb was included in the request</title>\n</head>\n<body><h2>HTTP ERROR 403</h2>\n<p>Problem accessing /job/test/build. Reason:\n<pre> No valid crumb was included in the request</pre></p><hr><a href="">Powered by Jetty:// 9.4.z-SNAPSHOT</a><hr/>\n\n</body>\n</html>\n'

It is good practice to enable additional security in Jenkins by turning on the “Prevent Cross Site Forgery exploits” option in the security settings, so if you see this error it is a good thing.  The below example shows this security feature in Jenkins.

enable xss protection

The Fix

This error threw me off at first, but it didn’t take long to find a quick fix.  There is a crumb_requester class in the jenkinsapi that you can use to create the crumbed auth token.  You can use the following example as a guideline in your own code.

from jenkinsapi.jenkins import Jenkins
from jenkinsapi.utils.crumb_requester import CrumbRequester


# We need to create a crumb for the request first
crumb=CrumbRequester(username=JENKINS_USER, password=JENKINS_PASS, baseurl=JENKINS_URL)

# Now use the crumb to authenticate against Jenkins
jenkins = Jenkins(JENKINS_URL, username=JENKINS_USER, password=JENKINS_PASS, requester=crumb)


The code looks very similar to creating a normal Jenkins authentication object, the only difference being that we create and then pass in a crumb for the request, rather than just a username/password combination.  Once the crumbed authentication object has been created, you can continue writing your Python code as you would normally.  If you’re interested in learning more about crumbs and CSRF you can find more here, or just Google for CSRF for more info.

This issue was slightly confusing/annoying, but I’d rather deal with an extra few lines of code and know that my Jenkins server is secure.

Read More

Hide file extensions in PowerShell tab completion

One thing I have quickly discovered as I get acclimated to my new Windows machine is that by default the Windows Powershell CLI appends the executable file extension to the command that gets run, which is not the case on Linux or OSX.  That got me wondering if it is possible to modify this default behavior and remove the extension.  I’m going to ruin the surprise and let everybody know that it is definitely possible change this behavior, thanks to the flexibility of Powershell and friends.  Now that the surprise is ruined, read on to find out how this solution works.

To check which file types Windows considers to be executable you can type $Env:PathExt.

PS > $Env:PathExt

Similarly, you can type $Env:Path to get a list of places that Windows will look for files to execute by default.

PS > $Env:PATH
C:\Program Files\Docker\Docker\Resources\bin;C:\Python35\Scripts\;C:\Python35\;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files (x86)\NVIDIA Co
ram Files\nodejs\;C:\Program Files\Git\cmd;C:\Program Files (x86)\Skype\Phone\;C:\Users\jmreicha\AppData\Local\Microsoft\WindowsApps;C:\Users\jmreicha\AppData\Local\atom\bin;C:\Users\jmreicha\AppData\Roaming\npm

The problem though, is that when you start typing in an extension that is part of this path, say python, and tab complete it, Windows will automatically append the file extension to the executable.  Since I am more comfortable using a *nix style shell it is an annoyance having to deal with the file extensions.

Below I will show you a hack for hiding these from you Powershell prompt.  It is actually much more work than I thought to add this behavior but with some help from some folks over at stackoverflow, we can add it.  Basically, we need to overwrite the functionality of the default Powershell tab completion with our own, and then have that override get loaded into the Powershell prompt when it gets loaded, via a custom Profile.ps1 file.

To get this working, the first step is to look at what the default tab completion does.

(Get-Command 'TabExpansion2').ScriptBlock

This will spit out the code that handles the tab completion behavior.  To get our custom behavior we need to override the original code with our own logic, which I have below (I wish I came up with this myself but alas).  This is note the full code, just the custom logic.  The full script is posted below.

$field = [System.Management.Automation.CompletionResult].GetField('completionText', 'Instance, NonPublic')
$source.CompletionMatches | % {
        If ($_.ResultType -eq 'Command' -and [io.file]::Exists($_.ToolTip)) {
            $field.SetValue($_, [io.path]::GetFileNameWithoutExtension($_.CompletionText))
Return $source

The code looks a little bit intimidating but is basically just looking to see if the command is executable and on our system path, and if it is just strips out the extension.

So to get this all working, we need to create a file with the logic, and have Powershell read it at load time.  Go ahead and paste the following code into a file like no_ext_tabs.ps1.  I place this in the Powershell path (~/Documents/WindowsPowerShell), but you can put it anywhere.

Function TabExpansion2 {
    [CmdletBinding(DefaultParameterSetName = 'ScriptInputSet')]
        [Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 0)]
        [string] $inputScript,

        [Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 1)]
        [int] $cursorColumn,

        [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 0)]
        [System.Management.Automation.Language.Ast] $ast,

        [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 1)]
        [System.Management.Automation.Language.Token[]] $tokens,

        [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 2)]
        [System.Management.Automation.Language.IScriptPosition] $positionOfCursor,

        [Parameter(ParameterSetName = 'ScriptInputSet', Position = 2)]
        [Parameter(ParameterSetName = 'AstInputSet', Position = 3)]
        [Hashtable] $options = $null

        $source = $null
        if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')
            $source = [System.Management.Automation.CommandCompletion]::CompleteInput(
                <#inputScript#>  $inputScript,
                <#cursorColumn#> $cursorColumn,
                <#options#>      $options)
            $source = [System.Management.Automation.CommandCompletion]::CompleteInput(
                <#ast#>              $ast,
                <#tokens#>           $tokens,
                <#positionOfCursor#> $positionOfCursor,
                <#options#>          $options)
        $field = [System.Management.Automation.CompletionResult].GetField('completionText', 'Instance, NonPublic')
        $source.CompletionMatches | % {
            If ($_.ResultType -eq 'Command' -and [io.file]::Exists($_.ToolTip)) {
                $field.SetValue($_, [io.path]::GetFileNameWithoutExtension($_.CompletionText))
        Return $source

To start using this tab completion override file right away, just source the file as below and it should start working right away.

. .\no_ext_tabs.ps1

If you want the extensions to be hidden every time you start a new Powershell session we just need to create a new Powershell profile (more reading on creating Powershell profiles here if you’re interested) and have it load our script. If you already have a custom profile you can skip this step.

New-Item -path $profile -type file -force

After you create the profile go ahead and edit it by adding the following configuration.

# Dot source not_ext_tabs to remove file extensions from executables in path
. C:\Users\jmreicha\Documents\WindowsPowerShell\no_ext_tabs.ps1

Close your shell and open it again and you should no longer see the file extensions.

There is one last little, unrelated tidbit that I discovered through this process but thought was pretty handy and worth sharing with other Powershell N00bs.

Powershell 3 and above provides some nice key bindings for jumping around the CLI, similar to a bash based shell if you are familiar or have a background using *nix systems.

Powershell key shortcuts

You can check the full list of these key bindings by typing ctrl+alt+shift+? in your Powershell prompt (thanks Keith Hill for this trick).

Read More

Quickly get Node.js up and running on Windows

Installing software on Windows in an automatable, repeatable and easy way in Windows has always been painful in the past.  Luckily, in recent years there have been some really nice additions to Windows and its ecosystem that have improved the process significantly.  The main tools that ease this process are Powershell and Chocolatey and these tools have significantly improved the developer  and administrative experiences in Windows.

In the past, in order to install something like a programming language and its environment you would have to manually download the zip or tar file, extract it, put it in the correct place, set up environment variables and system paths manually, etc.  Things would also break pretty easily and it was just painful in general to work with.

Hopefully you are already familiar with Powershell at least because I won’t be covering it much in this post.  If you have any recent version of Windows you should have Powershell.  Below I describe Chocolately a little bit and why it is useful so you can find out more in the post or you can check out the Chocolately website, which does a much better job of explaining its benefits, how it is used and why package managers are good.

Update Windows execution policy

This process is pretty straight forward.  Make sure you open up a Powershell prompt with admin privileges, otherwise you will run into problems.  The first step is to change the default system execution policy (if you haven’t already).  On a fresh install of Windows, you will need to loosen up the security in order to install Chocolatey, which will be used to install and mange Node.js.  Luckily there are just a few Powershell commands that need to run.  To check the status of the execution policy, run the following.


This should tell you what your execution policy is currently set to.  To loosen the policy for Choco, run the following command.

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Follow the prompt and choose [Y] to update the policy.  Now, if you run Get-ExecutionPolicy you should see RemoteSigned.


If you don’t have your execution policy opened up to at least RemoteSigned, you will have trouble installing things from the internet, including Chocoloatey.  You can find more information about Execution Policies here if you don’t trust me or just want a better idea of how they work.

Install Chocolatey

If you aren’t familiar, Chocolately is a package manager for Windows, similar to apt-get on Debian Linux systems or yum on Redhat based systems.  It allows users to quickly and easily install and manage software packages on Windows platforms through Powershell.

The steps to installing are Chocolatey are listed below.

iwr -UseBasicParsing | iex

This command will take care of pretty much all of the setup so just watch it do its thing.  Again, make sure you are inside of an elevated admin shell, otherwise you will likely have problems with the installation.

Install Node.js

The last step (finally) is to install Node.js.  Luckily this is the easiest part.  Just run the following command.

choco install nodejs.install

Choose [Y] to accept that you want to run the install script and let it run.  There should be some colored output and when it is done Node should be installed on your system.  You will need to make sure you close and re-open you Powershell prompt to get the Node binaries to be picked up on your PATH, or just source the shell by running “RefreshEnv” to pick up the new path.  If you are in an admin shell I would recommend dropping out of it by simply closing the current session and opening up a new, non privileged session.

install node

Once you have a fresh shell you can test that Node installed properly.

node -v

Now you are ready to go.  It only took a few minutes with the Choco package manger.  If you are new to Node in general and are looking for a good resource, the learn you the node project on github is pretty decent.

Let me know if you have any caveats to add to this method, it is the easiest and fastest way I have found to installing Node as well as other pieces of software in Windows without any hassle.

Read More